Mechanical and Acoustic Emission (AE) Characteristics of Rocks under Biaxial Confinements

Author:

Du KunORCID,Liu Minghui,Yang Chengzhi,Tao Ming,Feng Fukang,Wang ShaofengORCID

Abstract

The surrounding rocks of underground engineering are generally subjected to a biaxial compressive stress condition. The failure properties of rocks under such a stress condition are worthy of being studied to ensure the stability of surrounding rock. This study aims to investigate the mechanical characteristics and acoustic emission (AE) properties of granite, marble, and sandstone in biaxial compression tests. Under biaxial confinements, it is evident that the elastic moduli of the three types of rocks decrease, and the plasticity increases monotonously with the increase of the intermediate principal stress σ2. As σ2 increases, the biaxial compressive strength σbcs of rock increases initially and subsequently decreases. The lateral strain ε2 of rock under biaxial confinement is controlled by both σ1 and σ2, and the restrain degree in the development of microcracks and the constrain extent in the expansion along the direction of σ2 are both enhanced gradually with increase in σ2. The sharp increase points of AE hit and AE count indicate that the failure will occur soon. The AF-RA distribution of AE signals shows that the increase of σ2 causes more tensile cracks in rock. According to the dip failure angle of macro-cracks in rock under biaxial confinement, the failure modes of granite and marble are slabbing, while failure mode of sandstone is shear. In addition, the σ2 has a positive effect on the mass ratio of large size fragments after rock failure. An exponent relationship between the σbcs and σ2 was found, and the inner apices–inscribed Drucker–Prager criterion can be used to predict the σbcs of rock.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3