A Machine Learning Tool to Predict the Response to Neoadjuvant Chemotherapy in Patients with Locally Advanced Cervical Cancer

Author:

Arezzo FrancescaORCID,La Forgia DanieleORCID,Venerito Vincenzo,Moschetta Marco,Tagliafico Alberto Stefano,Lombardi Claudio,Loizzi VeraORCID,Cicinelli Ettore,Cormio GennaroORCID

Abstract

Despite several studies having identified factors associated with successful treatment outcomes in locally advanced cervical cancer, there is the lack of accurate predictive modeling for progression-free survival (PFS) in patients who undergo radical hysterectomy after neoadjuvant chemotherapy (NACT). Here we investigated whether machine learning (ML) may have the potential to provide a tool to predict neoadjuvant treatment response as PFS. In this retrospective observational study, we analyzed patients with locally advanced cervical cancer (FIGO stages IB2, IB3, IIA1, IIA2, IIB, and IIIC1) who were followed in a tertiary center from 2010 to 2018. Demographic and clinical characteristics were collected at either treatment baseline or at 24-month follow-up. Furthermore, we recorded data about magnetic resonance imaging (MRI) examinations and post-surgery histopathology. Proper feature selection was used to determine an attribute core set. Three different machine learning algorithms, namely Logistic Regression (LR), Random Forest (RFF), and K-nearest neighbors (KNN), were then trained and validated with 10-fold cross-validation to predict 24-month PFS. Our analysis included n. 92 patients. The attribute core set used to train machine learning algorithms included the presence/absence of fornix infiltration at pre-treatment MRI as well as of either parametrium invasion and lymph nodes involvement at post-surgery histopathology. RFF showed the best performance (accuracy 82.4%, precision 83.4%, recall 96.2%, area under receiver operating characteristic curve (AUROC) 0.82). We developed an accurate ML model to predict 24-month PFS.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3