Abstract
In construction, a large-scale 3D printing method for construction is used to build houses quickly, based on Computerized Aid Design. Currently, the construction industry is beginning to apply quite a lot of 3D printing technologies to create buildings that require a quick construction time and complex structures that classical methods cannot implement. In this paper, a Cable-Driven Parallel Robot (CDPR) is described for the 3D printing of concrete for building a house. The CDPR structures are designed to be suitable for 3D printing in a large workspace. A linear programming algorithm was used to quickly calculate the inverse kinematic problem with the force equilibrium condition for the moving platform; this method is suitable for the flexible configuration of a CDPR corresponding to the various spaces. Cable sagging was also analyzed by the Trust-Region-Dogleg algorithm to increase the accuracy of the inverse kinematic problem for controlling the robot to perform basic trajectory interpolation movements. The paper also covers the design and analysis of a concrete extruder for the 3D printing method. The analytical results are experimented with based on a prototype of the CDPR to evaluate the work ability and suitability of this design. The results show that this design is suitable for 3D printing in construction, with high precision and a stable trajectory printing. The robot configuration can be easily adjusted and calculated to suit the construction space, while maintaining rigidity as well as an adequate operating space. The actuators are compact, easy to disassemble and move, and capable of accommodating a wide variety of dimensions.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference20 articles.
1. ASTM F2792-10 Standard Terminology for Additive Manufacturing Technologieshttps://www.astm.org/DATABASE.CART/HISTORICAL/F2792-10.htm
2. Developments in construction-scale additive manufacturing processes
3. Large-scale 3D printing by a team of mobile robots
4. Large-scale 3D printing with cable-driven parallel robots
5. Pylos, IAAChttps://iaac.net/project/pylos/
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献