Abstract
In this study, we identify promising, currently vacant technologies for a Truck on Flatcar or Truck on Freight Train (TFTFT) system by analyzing the relevant patent information. We then apply network analysis from macro- and microperspectives to establish technology development strategies. We first researched the patent database from the United States Patent and Trademark Office (USPTO) by extracting relevant keywords for the TFTFT system. We then preprocessed the patent data to develop a patent-International Patent Classification (IPC) matrix and a patent-keyword matrix. Next, we developed a generative topographic mapping (GTM)-based patent map using the patent-IPC matrix and detected any patent vacuums. Then, in order to confirm the promising patent vacuums, we technically examined criticality and trend analyses. Finally, we designed an IPC-based network and a keyword network with promising patent vacuums to derive a technology development strategy from a macro- and microperspective for the TFTFT system. As a result, we confirmed two promising patent vacuums. The patent vacuums found were defined as the technical field of rail vehicles suitable for TFTFT systems and the technical field of equipment and systems for freight transfer to rail vehicles. The proposed procedure and analysis method provide useful insights for developing a research and development (R&D) strategy and technology development strategy for a TFTFT system.
Funder
Ministry of Land, Infrastructure and Transport
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献