Identification of Promising Vacant Technologies for the Development of Truck on Freight Train Transportation Systems

Author:

Jun SungchanORCID,Han Seong Ho,Yu JiwonORCID,Hwang Jumi,Kim Sangbaek,Lee ChulungORCID

Abstract

In this study, we identify promising, currently vacant technologies for a Truck on Flatcar or Truck on Freight Train (TFTFT) system by analyzing the relevant patent information. We then apply network analysis from macro- and microperspectives to establish technology development strategies. We first researched the patent database from the United States Patent and Trademark Office (USPTO) by extracting relevant keywords for the TFTFT system. We then preprocessed the patent data to develop a patent-International Patent Classification (IPC) matrix and a patent-keyword matrix. Next, we developed a generative topographic mapping (GTM)-based patent map using the patent-IPC matrix and detected any patent vacuums. Then, in order to confirm the promising patent vacuums, we technically examined criticality and trend analyses. Finally, we designed an IPC-based network and a keyword network with promising patent vacuums to derive a technology development strategy from a macro- and microperspective for the TFTFT system. As a result, we confirmed two promising patent vacuums. The patent vacuums found were defined as the technical field of rail vehicles suitable for TFTFT systems and the technical field of equipment and systems for freight transfer to rail vehicles. The proposed procedure and analysis method provide useful insights for developing a research and development (R&D) strategy and technology development strategy for a TFTFT system.

Funder

Ministry of Land, Infrastructure and Transport

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3