Dynamic Impedance Estimation: Challenges and Considerations

Author:

de Oliveira Mateus M.,Aleixo Renato R.,Resende Denise F.,Silva Leandro R. M.ORCID,Salles Rafael S.ORCID,Duque Carlos A.,Ribeiro Paulo F.

Abstract

The objective of this paper was to examine the dynamic impedance estimation of electrical systems from online measurements. The paper makes several considerations and highlights the challenges to obtain a precise estimation. Transducer equalization and harmonic synchrophasor estimation (HSpE) are reviewed and discussed. The use of online and adaptive equalization for transducers proves to be a viable solution for improving voltage transducer’s (VT’s) and current transducer’s (CT’s) frequency response. Additionally, the use of oversampling algorithms can mitigate the effects of noise in the HSpE. Furthermore, methods for harmonic impedance estimation are discussed. The independent component analysis ICA-based dynamic impedance estimation is proposed and results presented, which yields excellent agreement. Finally, harmonic modeling and simulation of injected harmonic currents are used to observe resonances through the amplification and attenuations and, consequently, the opportunity to confirm the system self and transfer impedances of a test system. Dynamic impedance estimation will continue to be a great challenge for the power systems engineer as the system complexity increases with the massive insertion of power electronic inverters and the associated required filtering. Real-time signal processing will be an effective tool to determine the dynamic self or transfer impedance.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of nonlinear load on the measurement of harmonic impedance of the power supply system;2023 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE);2023-03-16

2. Adaptive Channel Equalization for Frequency Response Correction of Instrument Transformers;2022 20th International Conference on Harmonics & Quality of Power (ICHQP);2022-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3