Accuracy Verification of an Anatomical Model Manufactured Using Low-Cost Additive Production

Author:

Tóth TeodorORCID,Varga PatrikORCID,Štefanovič BrankoORCID,Bednarčíková Lucia,Schnitzer MarekORCID,Hudák Radovan,Živčák Jozef

Abstract

The paper deals with the separation of the third cervical vertebra using the software VGStudio MAX, Mimics, and inVesalius. During the separation, various parameters of the threshold were used to determine the effect. The comparison of models from Mimics and inVesalius to VGStudio MAX showed that the cumulative variance distribution for 95% surface coverage is less than 0.935 mm. When comparing medically oriented software, Mimics and inVesalius, the deviation was less than 0.356 mm. The model was made of polylactic acid (PLA) material on a low-cost 3D printer, Prusa i3 MK2.5 MMU1. The printed model was scanned by four scanners: Artec Eva, 3Shape D700, Steinbichler Comet L3D, and Creaform EXAscan. The outputs from the scanners were compared to the reference model (standard tessellation language (STL) model for 3D printing) as well as to the scanner with the best accuracy (3Shape). Compared to the publications below, the analysis of deviations was evaluated on the entire surface of the model and not on selected dimensions. The cumulative variance distribution for comparing the output from the 3D scanner with the reference model, as well as comparing the scanners, shows that the deviation for 95% of the surface coverage is at the level of 0.300 mm. Since the model of the vertebra is planned for education and training, the used software and technologies are suitable for use in the design and the production process.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference39 articles.

1. The Accuracy of a Method for Printing Three-Dimensional Spinal Models

2. Invited review article: Where and how 3D printing is used in teaching and education

3. Bioengineering for Surgery—1st Edition;Cheung,2015

4. 3D printing based on imaging data: review of medical applications

5. Medical Applications of 3D Printing|Iris Publishershttps://irispublishers.com/abeb/fulltext/medical-applications-of-3d-printing.ID.000531.php

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3