Abstract
Infrared thermography is a widely used technology that has been successfully applied to many and varied applications. These applications include the use as a non-destructive testing tool to assess the integrity state of materials. The current level of development of this application is high and its effectiveness is widely verified. There are application protocols and methodologies that have demonstrated a high capacity to extract relevant information from the captured thermal signals and guarantee the detection of anomalies in the inspected materials. However, there is still room for improvement in certain aspects, such as the increase of the detection capacity and the definition of a detailed characterization procedure of indications, that must be investigated further to reduce uncertainties and optimize this technology. In this work, an innovative thermographic data analysis methodology is proposed that extracts a greater amount of information from the recorded sequences by applying advanced processing techniques to the results. The extracted information is synthesized into three channels that may be represented through real color images and processed by quaternion algebra techniques to improve the detection level and facilitate the classification of defects. To validate the proposed methodology, synthetic data and actual experimental sequences have been analyzed. Seven different definitions of signal-to-noise ratio (SNR) have been used to assess the increment in the detection capacity, and a generalized application procedure has been proposed to extend their use to color images. The results verify the capacity of this methodology, showing significant increments in the SNR compared to conventional processing techniques in thermographic NDT.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献