Abstract
Understanding the origin of reactive species following ionization in aqueous systems is an important aspect of radiation–matter interactions as the initial reactive species lead to production of radicals and subsequent long-term radiation damage. Tunable ultrafast X-ray free-electron pulses provide a new window to probe events occurring on the sub-picosecond timescale, supplementing other methodologies, such as pulse radiolysis, scavenger studies, and stop flow that capture longer timescale chemical phenomena. We review initial work capturing the fastest chemical processes in liquid water radiolysis using optical pump/X-ray probe spectroscopy in the water window and discuss how ultrafast X-ray pump/X-ray probe spectroscopies can examine ionization-induced processes more generally and with better time resolution. Ultimately, these methods will be applied to understanding radiation effects in complex aqueous solutions present in high-level nuclear waste.
Funder
U.S. Department of Energy
Office of Science
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献