Abstract
Assembly path planning of complex products in virtual assembly is a necessary and complicated step, which will become long and inefficient if the assembly path of each part is completely planned in the assembly space. The coincidence or partial coincidence of the assembly paths of some parts provides an opportunity to solve this problem. A path planning algorithm based on prior path reuse (PPR algorithm) is proposed in this paper, which realizes rapid planning of an assembly path by reusing the planned paths. The core of the PPR algorithm is a dual-tree fusion strategy for path reuse, which is implemented by improving the rapidly exploring random tree star (RRT *) algorithm. The dual-tree fusion strategy is used to find the nearest prior node, the prior connection node, the nearest exploring node, and the exploring connection node and to connect the exploring tree to the prior tree after the exploring tree is extended to the prior space. Then, the optimal path selection strategy is used to calculate the costs of all planned paths and select the one with the minimum cost as the optimal path. The PPR algorithm is compared with the RRT * algorithm in path planning for one start node and multiple start nodes. The results show that the total time and the number of sampling points for assembly path planning of batch parts using the PPR algorithm are far less than those using the RRT * algorithm.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science