Rapid Planning of an Assembly Path by Reusing the Prior Path

Author:

Yi GuodongORCID,Zhou ChuanyuanORCID,Cao Yanpeng,Hu Hangjian

Abstract

Assembly path planning of complex products in virtual assembly is a necessary and complicated step, which will become long and inefficient if the assembly path of each part is completely planned in the assembly space. The coincidence or partial coincidence of the assembly paths of some parts provides an opportunity to solve this problem. A path planning algorithm based on prior path reuse (PPR algorithm) is proposed in this paper, which realizes rapid planning of an assembly path by reusing the planned paths. The core of the PPR algorithm is a dual-tree fusion strategy for path reuse, which is implemented by improving the rapidly exploring random tree star (RRT *) algorithm. The dual-tree fusion strategy is used to find the nearest prior node, the prior connection node, the nearest exploring node, and the exploring connection node and to connect the exploring tree to the prior tree after the exploring tree is extended to the prior space. Then, the optimal path selection strategy is used to calculate the costs of all planned paths and select the one with the minimum cost as the optimal path. The PPR algorithm is compared with the RRT * algorithm in path planning for one start node and multiple start nodes. The results show that the total time and the number of sampling points for assembly path planning of batch parts using the PPR algorithm are far less than those using the RRT * algorithm.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3