Partial Least Squares Improved Multivariate Adaptive Regression Splines for Visible and Near-Infrared-Based Soil Organic Matter Estimation Considering Spatial Heterogeneity

Author:

Wang XiaomiORCID,Yang CanORCID,Zhou Mengjie

Abstract

Under the influence of complex environmental conditions, the spatial heterogeneity of soil organic matter (SOM) is inevitable, and the relationship between SOM and visible and near-infrared (VNIR) spectra has the potential to be nonlinear. However, conventional VNIR-based methods for soil organic matter estimation cannot simultaneously consider the potential nonlinear relationship between the explanatory variables and predictors and the spatial heterogeneity of the relationship. Thus, the regional application of existing VNIR spectra-based SOM estimation methods is limited. This study combines the proposed partial least squares–based multivariate adaptive regression spline (PLS–MARS) method and a regional multi-variable associate rule mining and Rank–Kennard-Stone method (MVARC-R-KS) to construct a nonlinear prediction model to realize local optimality considering spatial heterogeneity. First, the MVARC-R-KS method is utilized to select representative samples and alleviate the sample global underrepresentation caused by spatial heterogeneity. Second, the PLS–MARS method is proposed to construct a nonlinear VNIR spectra-based estimation model with local optimization based on selected representative samples. PLS–MARS combined with the MVARC-R-KS method is illustrated and validated through a case study of Jianghan Plain in Hubei Province, China. Results showed that the proposed method far outweighs some available methods in terms of accuracy and robustness, suggesting the reliability of the proposed prediction model.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3