Abstract
With the ever-progressing development in the field of computational and analytical science the last decade has seen a big improvement in the accuracy of electroencephalography (EEG) technology. Studies try to examine possibilities to use high dimensional EEG data as a source for Brain to Computer Interface. Applications of EEG Brain to computer interface vary from emotion recognition, simple computer/device control, speech recognition up to Intelligent Prosthesis. Our research presented in this paper was focused on the study of the problematic speech activity detection using EEG data. The novel approach used in this research involved the use visual stimuli, such as reading and colour naming, and signals of speech activity detectable by EEG technology. Our proposed solution is based on a shallow Feed-Forward Artificial Neural Network with only 100 hidden neurons. Standard features such as signal energy, standard deviation, RMS, skewness, kurtosis were calculated from the original signal from 16 EEG electrodes. The novel approach in the field of Brain to computer interface applications was utilised to calculated additional set of features from the minimum phase signal. Our experimental results demonstrated F1 score of 86.80% and 83.69% speech detection accuracy based on the analysis of EEG signal from single subject and cross-subject models respectively. The importance of these results lies in the novel utilisation of the mobile device to record the nerve signals which can serve as the stepping stone for the transfer of Brain to computer interface technology from technology from a controlled environment to the real-life conditions.
Funder
Agentúra na Podporu Výskumu a Vývoja
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
Kultúrna a Edukacná Grantová Agentúra MŠVVaŠ SR
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献