Frost Damage in Tight Sandstone: Experimental Evaluation and Interpretation of Damage Mechanisms

Author:

Ding Shun,Jia HailiangORCID,Zi Fan,Dong Yuanhong,Yao Yuan

Abstract

Low-porosity tight rocks are widely used as building and engineering materials. The freeze–thaw cycle is a common weathering effect that damages building materials in cold climates. Tight rocks are generally supposed to be highly frost-resistant; thus, studies on frost damage in tight sandstone are rare. In this study, we investigated the deterioration in mechanical properties and changes in P-wave velocity with freeze–thaw cycles in a tight sandstone. We also studied changes to its pore structure using nuclear magnetic resonance (NMR) technology. The results demonstrate that, with increasing freeze–thaw cycles, (1) the mechanical strength (uniaxial compressive, tensile, shear strengths) exhibits a similar decreasing trend, while (2) the P-wave velocity and total pore volume do not obviously increase or decrease. (3) Nanopores account for >70% of the pores in tight sandstone but do not change greatly with freeze–thaw cycles; however, the micropore volume has a continuously increasing trend that corresponds to the decay in mechanical properties. We calculated the pressure-dependent freezing points in pores of different diameters, finding that water in nanopores (diameter <5.9 nm) remains unfrozen at –20 °C, and micropores >5.9 nm control the evolution of frost damage in tight sandstone. We suggest that pore ice grows from larger pores into smaller ones, generating excess pressure that causes frost damage in micropores and then nanopores, which is manifested in the decrease in mechanical properties.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3