Abstract
This study evaluated the use of electrolyzed alkaline-reduced water instead of an alkaline activator for the production of a strong cement matrix with a large blast furnace slag replacement ratio. The flexural and compressive strength measurements, X-ray diffraction analysis, and scanning electron microscopy images of the cement matrices produced using electrolyzed alkaline-reduced water and regular tap water, and with blast furnace slag replacement ratios of 30 and 50% were compared to a normal cement matrix. The cement matrix produced using electrolyzed alkaline-reduced water and blast furnace slag exhibited an improved early age strength, where hydrate formation increased on the particle surface. The cement matrix produced using electrolyzed alkaline-reduced water exhibited a high strength development rate of over 90% of ordinary Portland cement (OPC) in BFS30. Therefore, the use of electrolyzed alkaline-reduced water in the place of an alkaline activator allowed for the formation of a very strong cement matrix in the early stages of aging when a large blast furnace slag replacement ratio was used.
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献