Risk Factor Evolution for Counterparty Credit Risk under a Hidden Markov Model

Author:

Anagnostou IoannisORCID,Kandhai Drona

Abstract

One of the key components of counterparty credit risk (CCR) measurement is generating scenarios for the evolution of the underlying risk factors, such as interest and exchange rates, equity and commodity prices, and credit spreads. Geometric Brownian Motion (GBM) is a widely used method for modeling the evolution of exchange rates. An important limitation of GBM is that, due to the assumption of constant drift and volatility, stylized facts of financial time-series, such as volatility clustering and heavy-tailedness in the returns distribution, cannot be captured. We propose a model where volatility and drift are able to switch between regimes; more specifically, they are governed by an unobservable Markov chain. Hence, we model exchange rates with a hidden Markov model (HMM) and generate scenarios for counterparty exposure using this approach. A numerical study is carried out and backtesting results for a number of exchange rates are presented. The impact of using a regime-switching model on counterparty exposure is found to be profound for derivatives with non-linear payoffs.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Strategy and Management,Economics, Econometrics and Finance (miscellaneous),Accounting

Reference35 articles.

1. Comparing density forecasts via weighted likelihood ratio tests;Amisano;Journal of Business & Economic Statistics,2007

2. Credit exposure models backtesting for Basel IIIhttps://www.risk.net/2362332

3. How Regimes Affect Asset Allocation

4. Supervisory Framework for the Use of “Backtesting” in Conjunction with the iNternal Models Approach to Market Risk Capital Requirements,1996

5. Basel III: A Global Regulatory Framework for More Resilient Banks and Banking Systems,2010a

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Credit risk evaluation: a comprehensive study;Multimedia Tools and Applications;2022-10-04

2. Contagious defaults in a credit portfolio: a Bayesian network approach;The Journal of Credit Risk;2020-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3