Mapping Urbanization and Evaluating Its Possible Impacts on Stream Water Quality in Chattanooga, Tennessee, Using GIS and Remote Sensing

Author:

Hall Jonah,Hossain A. K. M. Azad

Abstract

Impervious surfaces (IS) produced by urbanization can facilitate pollutants’ movement to nearby water bodies through stormwater. This study mapped and estimated the IS changes in Chattanooga, Tennessee, using satellite imagery acquired in 1986 and 2016. A model was developed utilizing the Normalized Difference Vegetation Index coupled with density slicing to detect and map urbanization through IS growth. Urban growth was quantified at USGS HUC12 watershed level including stream riparian areas. The obtained results show a net growth of 45.12 km2 of IS with a heterogeneous distribution. About 9.96 km2 of this growth is within 90 m of streams, about 6% of the study site’s land cover. The Lower South Chickamauga Creek watershed experienced the largest urban growth with a change from 24.2 to 48.5 km2. Using the riparian zone percent imperviousness, a stream risk assessment model was developed to evaluate potential stream impairment due to this growth. Approximately 87, 131, and 203 km lengths of streams identified as potentially at high, very high, and extreme risks, respectively, to be impaired due to urban growth from the last 30 years. These findings would benefit to proactively implement sustainable management plans for the streams near rapidly urbanizing areas in the study site.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference162 articles.

1. Impacts of impervious surfaces on the environment;Chithra;Int. J. Eng. Sci. Invent.,2015

2. Impervious surfaces and the quality of natural and built environments;Barnes,2001

3. World Urbanization Prospects: The 2014 Revision; ST/ESA/SER.A/366https://www.un.org/en/development/desa/publications/2014-revision-world-urbanization-prospects.html

4. Impacts of urbanization on urban structures and energy demand: What can we learn for urban energy planning and urbanization management?

5. Urbanisation and its impact on building energy consumption and efficiency in China

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3