Numerical Simulation Study of Huff-n-Puff Hydrocarbon Gas Injection Parameters for Enhanced Shale Oil Recovery

Author:

Garipova Alsu1,Mukhina Elena1ORCID,Cheremisin Alexander1,Spivakova Margarita1,Kasyanenko Anton2,Cheremisin Alexey1ORCID

Affiliation:

1. Center for Petroleum Science and Engineering, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia

2. Gazpromneft—Technological Partnerships, 190000 St. Petersburg, Russia

Abstract

Gas injection has already proven to be an efficient shale oil recovery method successfully tested all around the world. However, gas-enhanced oil recovery methods have never been implemented or tested for the greatest Siberian shale oil formation yet. This article proposes numerical simulation of a hydrocarbon gas injection process into a horizontal well with multiple hydraulic fractures perforating Bazhenov shale oil formation in Western Siberia characterized by ultra-low permeability. A complex field-scale numerical study of gas injection for such a formation has never been performed before and is presented for the first time in our work. The hydrodynamic compositional simulation was performed utilizing a commercial simulator. A sensitivity study for different operating parameters including cycle times, bottom-hole pressures for the production and injection period, and injected gas composition was performed after the model was history matched with the available production data. Some uncertain reservoir properties such as relative permeability curves were also sensitized upon. Two different ways of accounting for multiple hydraulic fractures in the simulation model are presented and the simulation results from both models are compared and discussed. Eventually, huff-n-puff injection of a hydrocarbon gas resulted in a 34–117% increase in oil recovery depending on the fracture model.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3