Comparison on Hydraulic Characteristics of Vertical and Horizontal Air-Cushion Surge Chambers in the Hydropower Station under Load Disturbances

Author:

Xu Tingyu1,Chen Sheng1ORCID,Zhang Jian1,Yu Xiaodong1,Lyu Jiawen1,Yan Haibin2

Affiliation:

1. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China

2. Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada

Abstract

Hydroelectric energy is an increasingly vital and effective renewable energy for modern society. The protective effect on the water hammer in the pipeline, the operational stability of the hydropower system, and the flow regime in the air-cushion surge chamber (ACSC) are three main problems during the design of the hydropower station with an ACSC. Comprehensively comparing the above issues between the horizontal and vertical ACSCs is meaningful. This study established the one-dimensional (1D) model based on the Method of Characteristics (MOC) under large load disturbances (LLD) and the rigid water column theory under small load disturbances (SLD). At the same time, the three-dimensional (3D) model was built based on the Volume of Fluid (VOF) to obtain a more detailed flow regime in the ACSC under the load acceptance condition. The results showed that the vertical ACSC was superior to the horizontal one for its large safe water depth, smaller maximum air pressure, and more stable flow under LLD. In contrast, the horizontal one was better than the vertical one for its extensive water area to calm the SLD during the transient process and smaller fluctuation of the surge under SLD. This study will provide a reference for a future project on selecting the structure of the ACSC.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3