Robust Maximum Efficiency Tracking Control of Wirelessly Powered Directly Supplied Heart Pumps

Author:

Hakemi Amir1,Jovanovic Dejan1,Vilathgamuwa Mahinda1ORCID,Walker Geoffrey R.1

Affiliation:

1. School of Electrical Engineering and Robotics, Queensland University of Technology (QUT), Brisbane City, QLD 4000, Australia

Abstract

In recent times, wireless power transfer systems have been identified as a reliable option to supply power to medical implants. Up to now, Wireless Power Transfer Systems (WPTS) have only been used to charge batteries of low-power medical implants. However, for medical implants requiring a relatively higher power, such as a ventricular assist device, which is an implanted blood pump in the patient’s abdominal cavity, an external power supply has been used. When WPTS is used for medical implants, it increases the number of required power converter stages and hardware complexity along with the volume, which tends to reduce the overall efficiency. In addition, the existence of uncertainties in WPTS-based medical implants, such as load and mutual inductance variations, can lead to system instability or poor performance. The focus of this paper is to design a WPTS to supply power to the pump motor directly through its inverter based on the requirements of the motor drive system (MDS) without resorting to an additional DC-to-DC converter stage. To this end, the constraints that the drive system imposes upon WPTS have been identified. In addition, to make a reliable closed-loop operation, a µ-synthesis robust controller is designed to make sure the system maintains its stability and performance with respect to the system’s existing uncertainties. A number of experimental results are provided to verify the effectiveness of the adopted WPTS design approach and the corresponding closed-loop controller for WPTS. Furthermore, the experimental findings for the maximum efficiency tracking (MET) approach (to minimize WPTS coil losses) and constant DC link voltage control approach are shown and compared. According to experimental results and system efficiency analysis, the former appears to perform better. The system dynamic performance analysis, on the other hand, demonstrates the latter’s advantage.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference37 articles.

1. High-Efficiency Transcutaneous Energy Transfer for Implantable Mechanical Heart Support Systems;Knecht;IEEE Trans. Power Electron.,2015

2. Eighth annual INTERMACS report: Special focus on framing the impact of adverse events;Kirklin;J. Heart Lung Transplant.,2017

3. Rotary mechanical circulatory support systems;Hosseinipour;J. Rehabil. Assist. Technol. Eng.,2017

4. Transcutaneous Energy Transmission for Mechanical Circulatory Support Systems: History, Current Status, and Future Prospects;Slaughter;J. Card. Surg.,2010

5. Continuous-Flow Rotary Left Ventricular Assist Devices with ‘3rd Generation’ Design. Semin;Pagani;Thorac. Cardiovasc. Surg.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3