Investigating the Influence of Pore Shape on Shale Gas Recovery with CO2 Injection Using Molecular Simulation

Author:

Zhou Juan1ORCID,Gao Shiwang1,Liu Lianbo1,Jing Tieya1,Mao Qian2,Zhu Mingyu1,Zhao Wentao1,Du Bingxiao3,Zhang Xu3,Shen Yuling3

Affiliation:

1. National Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, Huaneng Clean Energy Research Institute, Beijing 102209, China

2. Institute of Technology for Nanostructures, University Duisburg-Essen, 47057 Duisburg, Germany

3. Huaneng Daqing Thermal Power Co., Ltd., Ranghulu District, Daqing 163159, China

Abstract

Carbon-dioxide-enhanced shale gas recovery technology has significant potential for large-scale emissions reduction and can help achieve carbon neutrality targets. Previous theoretical studies mainly focused on gas adsorption in one-dimensional pores without considering the influence from the pore geometry. This study evaluates the effects of pore shape on shale gas adsorption. The pure and competitive gas adsorption processes of CO2 and CH4 in nanopores were investigated using molecular simulations to improve the prediction of shale gas recovery efficiency. Meanwhile, quantitative analysis was conducted on the effects of the pore shape on the CO2-EGR efficiency. The results indicate that the density of the adsorption layer in pores is equally distributed in the axial direction when the cone angle is zero; however, when the cone angle is greater than zero, the density of the adsorption layer decreases. Smaller cone-angle pores have stronger gas adsorption affinities, making it challenging to recover the adsorbed CH4 during the pressure drawdown process. Concurrently, this makes the CO2 injection method, based on competitive adsorption, efficient. For pores with larger cone angles, the volume occupied by the free gas is larger; thus, the pressure drawdown method displays relatively high recovery efficiency.

Funder

China Huaneng Group science and technology projects

National Nature Science Foundation of China

China Huaneng Group High-level Talents Programme

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3