Precision Angle Measurement Systems on the Basis of Ring Laser Gyro

Author:

Filatov Yuri V.,Pavlov Petr A.ORCID,Velikoseltsev Alexander A.,Schreiber K. UlrichORCID

Abstract

The main application of a ring laser gyroscope is navigation. It is currently the most widely used device for strapdown inertial navigation systems. However, it is also applicable for high-precision angle metrology systems. This paper discusses the properties of a laser dynamic goniometer (LDG) based on the ring laser gyroscope and designed for the calibration of optical polygons and digital angle converters, and for the measurement of angles between external mirrors (theodolite operating mode). We consider the main sources of uncertainty, such as the ring laser gyro bias due to an external magnetic field and the instability caused by the velocity of rotation along with applicable methods of their compensation. The reversal method providing separation of uncertainties of the LDG and the calibrated angle converter is analyzed in detail. The simplified cross-calibration method is also considered. The results of calibration of optical encoders of various designs—with and without their own rotors (on-axis and off-axis in Euramet terminology)—are presented. Some results of the dynamic goniometer for the measurement of angles between external mirrors are presented. It is shown that the LDG in this mode of operation demonstrates better accuracy than modern theodolites and total stations.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Auto-Alignment Non-Contact Optical Measurement Method for Quantifying Wobble Error of a Theodolite on a Vehicle-Mounted Platform;Tehnicki vjesnik - Technical Gazette;2024-04-15

2. The Measurement Setup Adjustment Influence on the Optical Polygon Calibration;2024 Conference of Young Researchers in Electrical and Electronic Engineering (ElCon);2024-01-29

3. Analysis of Systematic Error of Autocollimating Null Indicator and the Ways to Eliminate It;2023 Seminar on Fields, Waves, Photonics and Electro-optics: Theory and Practical Applications (FWPE);2023-11-21

4. GINGER;Mathematics and Mechanics of Complex Systems;2023-11-12

5. Mutual Calibration Method of Ring Laser Gyro and Optical Shaft Encoder;IEEE Sensors Journal;2023-10-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3