Numerical Modelling of Heat Transfer in Fine Dispersive Slurry Flow

Author:

Bartosik ArturORCID

Abstract

Slurry flows commonly appear in the transport of minerals from a mine to the processing site or from the deep ocean to the surface level. The process of heat transfer in solid–liquid flow is especially important for the long pipeline distance. The paper is focused on the numerical modelling and simulation of heat transfer in a fine dispersive slurry, which exhibits yield stress and damping of turbulence. The Bingham rheological model and the apparent viscosity concept were applied. The physical model was formulated and then the mathematical model, which constitutes conservative equations based on the time average approach for mass, momentum, and internal energy. The slurry flow in a pipeline is turbulent and fully developed hydrodynamically and thermally. The closure problem was solved by taking into account the Boussinesque hypothesis and a suitable turbulence model, which includes the influence of the yield shear stress on the wall damping function. The objective of the paper is to develop a new correlation of the Nusselt number for turbulent flow of fine dispersive slurry that exhibits yield stress and damping of turbulence. Simulations were performed for turbulent slurry flow, for solid volume concentrations 10%, 20%, 30%, and for water. The mathematical model for heat transfer of the carrier liquid flow has been validated. The study confirmed that the slurry velocity profiles are substantially different from those of the carrier liquid and have a significant effect on the heat transfer process. The highest rate of decrease in the Nusselt number is for low solid concentrations, while for C > 10% the decrease in the Nusselt number is gradual. A new correlation for the Nusselt number is proposed, which includes the Reynolds and Prandtl numbers, the dimensionless yield shear stress, and solid concentration. The new Nusselt number is in good agreement with the numerical predictions and the highest relative error was obtained for C = 10% and Nu = 44.3 and is equal to −12%. Results of the simulations are discussed. Conclusions and recommendations for further research are formulated.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3