Capsule Vehicle Dynamics Based on Levitation Coil Design Using Equivalent Model of a Sidewall Electrodynamic Suspension System

Author:

Yoon RanheeORCID,Negash Birhan Abebaw,You WonheeORCID,Lim JungyoulORCID,Lee Jinho,Lee Changyoung,Lee Kwansup

Abstract

A levitation system based on sidewall electrodynamic suspension (EDS) is considered for a capsule vehicle, which is a next-generation high-speed transportation system currently being studied. This levitation system does not require controlling of the gap between the guideway and the vehicle on which the superconducting electromagnet is mounted. However, when the vehicle is operated in a levitated state, the ride comfort is worse than that of the levitation system based on electromagnetic suspension (EMS), making it necessary to develop methods that can ensure good riding comfort. In addition, because the EDS system is complex and nonlinear with a combination of electromagnetics and mechanical dynamics, it is complicated to analyze the dynamic characteristics of the capsule vehicle, and the corresponding numerical analysis is time-consuming. Therefore, to easily understand the running dynamics of a capsule vehicle in the sidewall EMS system, the magnetic suspension characteristics corresponding to the primary suspension are simply modeled by considering the levitation stiffness in the vertical direction and the guidance stiffness in the lateral direction, similar to that in the case of the mechanical suspension. In this study, mathematical models of the levitation and guidance stiffnesses with respect to the speed and position of a vehicle body running at high speeds in a levitated state in the sidewall EDS system were derived for three design proposals of the levitation coil. The dynamic behavior of the vehicle based on the three design proposals was investigated by simulating a capsule vehicle model with 15 degrees of freedom.

Funder

Korea Railroad Research Institute

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference32 articles.

1. Virgin Hyperloop One https://virginhyperloop.com

2. Hyperloop Transportation Technology https://www.hyperlooptt.com

3. Hyperloop Alpha;Musk,2013

4. Review of maglev train technologies;Lee;IEEE Trans. Magn.,2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3