Sub-Transient Response of the DSC Controlled Inverter under Fault

Author:

Popadic Bane,Dumnic BorisORCID,Milicevic Dragan,Strezoski Luka,Petrovic Natasa

Abstract

The most important element of the new active distribution system concept is the grid connected converter that needs to offer fault ride through capabilities. The new system topologies require new tools for fault state calculation that would consider different control methodologies. In that regard, this paper investigates the initial response of the grid connected inverter under fault that operates using new control methodology based on the integration of the delay signal cancellation. Using modern laboratory setup for testing of renewable energy sources and their integration in the power system the technique is weighed against the classical technique that does not provide the adequate control under unbalanced faults. Furthermore, through a set of specific experiments the paper demonstrates the behavior of the converter under fault, preparing the outline for the fault response modeling of distributed energy resources. Experimental results present the sub-transient period and the transient period of the response, giving the attention to the inrush current (initial peak current) of the converter. It has been shown that the new technique has similar behavior as the classical control for the balanced faults (symmetrical voltage states), while the values of the peak current for different type of unbalanced faults (asymmetrical voltages where classical technique can be proven to be ineffective) has also been demonstrated.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference37 articles.

1. Renewable Energy Resources;Twidell,2005

2. REN21 Global Status Report-Renewableshttps://www.ren21.net/gsr-2020/

3. Global Wind Energy Council-GWEC GLOBAL WIND REPORT 2019https://gwec.net/global-wind-report-2019/

4. Unbalanced Model and Power-Flow Analysis of Microgrids and Active Distribution Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3