A New Approach for Satellite-Based Probabilistic Solar Forecasting with Cloud Motion Vectors

Author:

Carrière ThomasORCID,Amaro e Silva RodrigoORCID,Zhuang FuqiangORCID,Saint-Drenan Yves-MarieORCID,Blanc PhilippeORCID

Abstract

Probabilistic solar forecasting is an issue of growing relevance for the integration of photovoltaic (PV) energy. However, for short-term applications, estimating the forecast uncertainty is challenging and usually delegated to statistical models. To address this limitation, the present work proposes an approach which combines physical and statistical foundations and leverages on satellite-derived clear-sky index (kc) and cloud motion vectors (CMV), both traditionally used for deterministic forecasting. The forecast uncertainty is estimated by using the CMV in a different way than the one generally used by standard CMV-based forecasting approach and by implementing an ensemble approach based on a Gaussian noise-adding step to both the kc and the CMV estimations. Using 15-min average ground-measured Global Horizontal Irradiance (GHI) data for two locations in France as reference, the proposed model shows to largely surpass the baseline probabilistic forecast Complete History Persistence Ensemble (CH-PeEn), reducing the Continuous Ranked Probability Score (CRPS) between 37% and 62%, depending on the forecast horizon. Results also show that this is mainly driven by improving the model’s sharpness, which was measured using the Prediction Interval Normalized Average Width (PINAW) metric.

Funder

Horizon 2020 Framework Programme

Association Nationale de la Recherche et de la Technologie

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3