How Digital Twin Concept Supports Internal Transport Systems?—Literature Review

Author:

Kosacka-Olejnik MonikaORCID,Kostrzewski MariuszORCID,Marczewska MagdalenaORCID,Mrówczyńska BognaORCID,Pawlewski PawełORCID

Abstract

In the Industry 4.0 era, the Digital Twin has become one of the most promising enabling technologies supporting material flow. Although the literature on the Digital Twin is becoming relatively well explored, including a certain number of review papers, the context of the Digital Twins application in internal transport systems has not been investigated so far. This paper thoroughly reviews the research on the Digital Twins applied in internal transport systems concerning major research trends within this research area and identification of future research directions. It provides clarification of various definitions related to the Digital Twin concept, including misconceptions such as a digital shadow, a digital model, and a digital mirror. Additionally, the relationships between terms such as material handling, material flow, and intralogistics in the context of internal transport systems coupled with the Digital Twin are explained. This paper’s contribution to the current state of the art of the Digital Twins is three-fold: (1) recognition of the most influential and high-impact journals, papers, and researchers; (2) identification of the major research trends related to the Digital Twins applications in internal transport systems, and (3) presentation of future research agendas in investigating Digital Twins applied for internal transport systems.

Funder

Politechnika Poznańska

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3