Electric Field and Temperature Simulations of High-Voltage Direct Current Cables Considering the Soil Environment

Author:

Jörgens ChristophORCID,Clemens Markus

Abstract

For long distance electric power transport, high-voltage direct current (HVDC) cable systems are a commonly used solution. Space charges accumulate in the HVDC cable insulations due to the applied voltage and the nonlinear electric conductivity of the insulation material. The resulting electric field depends on the material parameters of the surrounding soil environment that may differ locally and have an influence on the temperature distribution in the cable and the environment. To use the radial symmetry of the cable geometry, typical electric field simulations neglect the influence of the surrounding soil, due to different dimensions of the cable and the environment and the resulting high computational effort. Here, the environment and its effect on the resulting electric field is considered and the assumption of a possible radial symmetric temperature within the insulation is analyzed. To reduce the computation time, weakly coupled simulations are performed to compute the temperature and the electric field inside the cable insulation, neglecting insulation losses. The results of a weakly coupled simulation are compared against those of a full transient simulation, considering the insulation losses for two common cable insulations with different maximum operation temperatures. Due to the buried depth of HV cables, an approximately radial symmetric temperature distribution within the insulation is obtained for a single cable and cable pairs when, considering a metallic sheath. Furthermore, the simulations show a temperature increase of the earth–air interface above the buried cable that needs to be considered when computing the cable conductor temperature, using the IEC standards.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3