Abstract
Three-phase isolated matrix converters enable bidirectional power conversion and galvanic isolation, and they are suitable for widespread applications in industry. However, excessive DC-link current ripple not only increases the inductor loss and switching loss but also causes more electromagnetic interference and grid current distortion. Traditionally, increasing DC-link inductance or switching frequency can reduce the current ripple to a certain extent, but it is not cost-effective due to the bulky size of the inductor and higher switching losses. To address the above issue, optimizing the modulation control strategy is more attractive. This paper proposes a new SVPWM strategy to reduce the current ripple. First, the inherent limitation of the conventional modulation scheme is revealed. Then, the new optimal modulation scheme is proposed for the isolated matrix converters to reduce the current ripple without increasing the DC-link inductor or switching frequency. Moreover, the power density of the system is effectively increased. Finally, simulation in a MATLAB environment and a laboratory prototype of the isolated matrix converter have been built to verify the effectiveness of the proposed strategy.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献