Charging Station Allocation for Electric Vehicle Network Using Stochastic Modeling and Grey Wolf Optimization

Author:

Shabbar RawanORCID,Kasasbeh Anemone,Ahmed Mohamed M.ORCID

Abstract

Optimal placement of Charging stations (CSs) and infrastructure planning are one of the most critical challenges that face the Electric Vehicles (EV) industry nowadays. A variety of approaches have been proposed to address the problem of demand uncertainty versus the optimal number of CSs required to build the EV infrastructure. In this paper, a Markov-chain network model is designed to study the estimated demand on a CS by using the birth and death process model. An investigation on the desired number of electric sockets in each CS and the average number of electric vehicles in both queue and waiting times is presented. Furthermore, a CS allocation algorithm based on the Markov-chain model is proposed. Grey Wolf Optimization (GWO) algorithm is used to select the best CS locations with the objective of maximizing the net profit under both budget and routing constraints. Additionally, the model was applied to Washington D.C. transportation network. Experimental results have shown that to achieve the highest net profit, Level 2 chargers need to be installed in low demand areas of infrastructure implementation. On the other hand, Level 3 chargers attain higher net profit when the number of EVs increases in the transportation network or/and in locations with high charging demands.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3