Modeling Renewable Energy Systems by a Self-Evolving Nonlinear Consequent Part Recurrent Type-2 Fuzzy System for Power Prediction

Author:

Tavoosi JafarORCID,Suratgar Amir Abolfazl,Menhaj Mohammad Bagher,Mosavi AmirORCID,Mohammadzadeh ArdashirORCID,Ranjbar Ehsan

Abstract

A novel Nonlinear Consequent Part Recurrent Type-2 Fuzzy System (NCPRT2FS) is presented for the modeling of renewable energy systems. Not only does this paper present a new architecture of the type-2 fuzzy system (T2FS) for identification and behavior prognostication of an experimental solar cell set and a wind turbine, but also, it introduces an exquisite technique to acquire an optimal number of membership functions (MFs) and their corresponding rules. Using nonlinear functions in the “Then” part of fuzzy rules, introducing a new mechanism in structure learning, using an adaptive learning rate and performing convergence analysis of the learning algorithm are the innovations of this paper. Another novel innovation is using optimization techniques (including pruning fuzzy rules, initial adjustment of MFs). Next, a solar photovoltaic cell and a wind turbine are deemed as case studies. The experimental data are exploited and the consequent yields emerge as convincing. The root-mean-square-error (RMSE) is less than 0.006 and the number of fuzzy rules is equal to or less than four rules, which indicates the very good performance of the presented fuzzy neural network. Finally, the obtained model is used for the first time for a geographical area to examine the feasibility of renewable energies.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3