Workload Assessment of Tractor Operations with Ergonomic Transducers and Machine Learning Techniques

Author:

Hota Smrutilipi1,Tewari V. K.1,Chandel Abhilash K.23ORCID

Affiliation:

1. Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India

2. Department of Biological Systems Engineering, Virginia Tech Tidewater AREC, Suffolk, VA 23437, USA

3. Center for Advanced Innovation in Agriculture (CAIA), Virginia Tech, Blacksburg, VA 23437, USA

Abstract

Dynamic muscular workload assessments of tractor operators are rarely studied or documented, which is critical to improving their performance efficiency and safety. A study was conducted to assess and model dynamic load on muscles, physiological variations, and discomfort of the tractor operators arriving from the repeated clutch and brake operations using wearable non-invasive ergonomic transducers and data-run techniques. Nineteen licensed tractor operators operated three different tractor types of varying power ranges at three operating speeds (4–5 km/h), and on two common operating surfaces (tarmacadam and farm roads). During these operations, ergonomic transducers were utilized to capture the load on foot muscles (gastrocnemius right [GR] and soleus right [SR] for brake operation and gastrocnemius left [GL], and soleus left [SL] for clutch operation) using electromyography (EMG). Forces exerted by the feet during brake and clutch operations were measured using a custom-developed foot transducer. During the process, heart rate (HR) and oxygen consumption rates (OCR) were also measured using HR monitor and K4b2 systems, and energy expenditure rate (EER) was determined using empirical equation. Post-tractor operation cycle, an overall discomfort rating (ODR) for that operation was manually recorded on a 10-point psychophysical scale. EMG-based maximum volumetric contraction (%MVC) measurements revealed higher strain on GR (%MVC = 43%), GL (%MVC = 38%), and SR (%MVC = 41%) muscles which in normal conditions should be below 30%. The clutch and brake actuation forces were recorded in the ranges of 90–312 N and 105–332 N, respectively and were significantly affected by the operating speed, tractor type, and operating surface (p < 0.05). EERs of the operators were measured in the moderate-heavy to heavy ranges (9–24 kJ/min) during the course of trials, suggesting the need to refine existing clutch and brake system designs. Average operator ODR responses indicated 7.8% operations in light, 48.5% in light-moderate, 25.2% in moderate, 10.7% in moderate-high, and 4.9% operations in high discomfort categories. When evaluated for the possibility of minimizing the number of transducers for physical workload assessment, EER showed moderate-high correlations with the EMG signals (rGR = 0.78, rGL = 0.75, rSR = 0.68, rSL = 0.66). Similarly, actuation forces had higher correlations with EMG signals for all the selected muscles (r = 0.70–0.87), suggesting the use of simpler transducers for effective operator workload assessment. As a means to minimize subjectivity in ODR responses, machine learning algorithms, including K-nearest neighbor (KNN), random forest classifier (RFC), and support vector machine (SVM), predicted the ODR using body mass index (BMI), HR, EER, and EMG at high accuracies of 87–97%, with RFC being the most accurate. Such high-throughput and data-run ergonomic evaluations can be instrumental in reconsidering workplace designs and better fits for end-users in terms of agricultural tractors and machinery systems.

Funder

Indian Council of Agricultural Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3