Impact of Effluent from the Leachate Treatment Plant of Taman Beringin Solid Waste Transfer Station on the Quality of Jinjang River

Author:

Chin Pui MunORCID,Naim Aine Nazira,Suja Fatihah,Ahmad Usul Muhammad Fadly

Abstract

Rapid population growth has contributed to increased solid waste generated in Malaysia. Most landfills that have reached the design capacity are now facing closure. Taman Beringin Landfill was officially closed, so the Taman Beringin Solid Waste Transfer Station was built to manage the relocation, consolidation, and transportation of solid waste to Bukit Tagar Sanitary Landfill. Leachates are generated as a consequence of rainwater percolation through waste and biochemical processes in waste cells. Leachate treatment is needed, as leachates cause environmental pollution and harm human health. This study investigates the impact of treated leachate discharge from a Leachate Treatment Plant (LTP) on the Jinjang River water quality. The performance of the LTP in Taman Beringin Solid Waste Transfer Station was also assessed. Leachate samples were taken at the LTP’s anoxic tank, aeration tank, secondary clarifier tank, and final discharge point, whereas river water samples were taken upstream and downstream of Jinjang River. The untreated leachate returned the following readings: biochemical oxygen demand (BOD) (697.50 ± 127.94 mg/L), chemical oxygen demand (COD) (2419.75 ± 1155.22 mg/L), total suspended solid (TSS) (2710.00 ± 334.79 mg/L), and ammonia (317.08 ± 35.45 mg/L). The LTP’s overall performance was satisfactory, as the final treated leachates were able to meet the standard requirements of the Environmental Quality (Control of Pollution from Solid Waste Transfer Station and Landfill) Regulation 2009. However, the LTP’s activated sludge system performance was not satisfactory, and the parameters did not meet the standard limits. The result shows a low functioning biological treatment method that could not efficiently treat the leachate. However, a subsequent step of combining the biological and chemical process (coagulation, flocculation, activated sludge system, and activated carbon adsorption) helped the treated leachate to meet the standard B requirement stipulated by the Department of Environment (DOE), i.e., to flow safely into the river. This study categorized Jinjang River as polluted, with the discharge of the LTP’s treated leachates, possibly contributing to the river pollution. However, other factors, such as the upstream sewage treatment plant and the ex-landfill downstream, may have also affected the river water quality. The LTP’s activated sludge system performance at the transfer station still requires improvement to reduce the cost of the chemical treatment.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3