Modeling and Experimental Validation of Compression and Storage of Raw Biogas

Author:

Mysior MarekORCID,Stępień PawełORCID,Koziołek Sebastian

Abstract

A significant challenge in sustainability and development of energy systems is connected with limited diversity and availability of fuels, especially in rural areas. A potential solution to this problem is compression, transport, and storage of raw biogas, that would increase diversity and availability of energy sources in remote areas. The aim of this study was to perform experimental research on raw biogas compression concerning biogas volume that can be stored in a cylinder under the pressure of 20 MPa and to compare obtained results with numerical models used to describe the state of gas at given conditions. Results were used to determine the theoretical energy content of raw biogas, assuming its usage in CHP systems. In the study, six compression test runs were conducted on-site in an agricultural biogas plant. Compression time, pressure as well as gas volume, and temperature rise were measured for raw biogas supplied directly from the digester. Obtained results were used to evaluate raw biogas compressibility factor Z and were compared with several equations of state and numerical methods for calculating the Z-factor. For experimental compression cycles, a theoretical energy balance was calculated based on experimental results published elsewhere. As a result, gas compressibility factor Z for storage pressure of 20 MPa and a temperature of 319.9 K was obtained and compared with 6 numerical models used for similar gases. It was shown that widely known numerical models can predict the volume of compressed gas with AARE% as low as 4.81%. It was shown that raw biogas supplied directly from the digester can be successfully compressed and stored in composite cylinders under pressure up to 20 MPa. This proposes a new method to utilize raw biogas in remote areas, increasing the diversity of energy sources and increasing the share of renewable fuels worldwide.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference38 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3