Diffusion of Alloying Cobalt Oxide (II, III) into Electrical Steel

Author:

Elgamli Elmazeg1ORCID,Anayi Fatih1

Affiliation:

1. Magnetics and Materials Research Group, School of Engineering, Cardiff University, Cardiff CF24 3AA, UK

Abstract

This paper aims to reduce power loss in electrical steel by improving its surface resistivity. The proposed approach involves introducing additional alloying elements through diffusion once the steel sheet reaches the desired thickness. Various effective techniques have been suggested and tested to enhance the resistivity of the strip. The method entails creating a paste by combining powdered diffusing elements with specific solutions, which are then applied to the steel’s surface. After firing the sample, a successful transfer of certain elements to the steel surface is achieved. The amount and distribution of these elements can be controlled by adjusting the paste composition, modifying the firing parameters, and employing subsequent annealing procedures. This study specifically investigates the effectiveness of incorporating cobalt oxide (II, III) into non-oriented silicon iron to mitigate power loss. The experimental samples consist of non-oriented electrical steels with a composition of 2.4 wt% Si-Fe and dimensions of 0.305 mm × 300 mm × 30 mm. Power loss and permeability measurements are conducted using a single strip tester (SST) within a magnetic field range of 0.5 T to 1.7 T. These measurements are performed using an AC magnetic properties measurement system under controlled sinusoidal conditions at various frequencies. The research explores the impact of cobalt oxide (II, III) addition, observing successful diffusion into the steel through the utilization of a paste based on sodium silicate solution. This treatment results in a significant reduction in power loss in the non-oriented material, with power loss reductions of 14% at 400 Hz and 23% at 1 kHz attributed to the elimination of a porous layer containing a high concentration of the diffusing element. The formation of porosity in the cobalt addition was found to be particularly sensitive to firing temperature near the melting point. The diffusion process was examined through scanning electron microscopy (SEM) in combination with energy-dispersive X-ray spectroscopy (EDS). The results demonstrate improved power losses in the coated samples compared with the uncoated ones. In conclusion, this study establishes that the properties of non-oriented electrical steels can be enhanced through a safer process compared with the methods employed by previous researchers.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3