Affiliation:
1. Chair of Materials Test Engineering (WPT), Faculty of Mechanical Engineering, TU Dortmund University, Baroper Str. 303, D-44227 Dortmund, Germany
Abstract
Selective laser melting is a form of additive manufacturing in which a high-power density laser is used to melt and fuse metallic powders to form the final specimen. By performing fatigue and tensile tests under various loading conditions, the study sought to establish the impact of internal defects on the specimens’ fatigue life. Scanning electron microscopy and finite element simulation were conducted to determine the defect characteristics and the stress intensity factor of the specimens. Four different methods were used to determine the intrinsic defect length of the specimen, using data such as grain size, yield strength, and hardness value, among others. Kitagawa–Takahashi and El-Haddad diagrams were developed using the results. A correction factor hypothesis was established based on the deviation of measured data. Using Paris law, fatigue life was determined and compared to the experimental results later. The study aims to select one or more approaches that resemble experimental values and comprehend how internal defects and loading situations affect fatigue life. This study’s findings shed light on how internal defects affect the fatigue life of selective laser-melted AlSi10Mg specimens and can aid in improving the fatigue life prediction method of additively manufactured components, provided an appropriate intrinsic crack criterion is selected.
Funder
German Research Foundation
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献