Upstream Remotely-Sensed Hydrological Variables and Their Standardization for Surface Runoff Reconstruction and Estimation of the Entire Mekong River Basin

Author:

Zhou Linghao,Fok HokORCID,Ma Zhongtian,Chen QiangORCID

Abstract

River water discharge (WD) is an essential component when monitoring a regional hydrological cycle. It is expressed in terms of surface runoff (R) when a unit of river basin surface area is considered. To compensate for the decreasing number of hydrological stations, remotely-sensed WD estimation has been widely promoted over the past two decades, due to its global coverage. Previously, remotely-sensed WD was reconstructed either by correlating nearby remotely-sensed surface responses (e.g., indices and hydraulic variables) with ground-based WD observations or by applying water balance formulations, in terms of R, over an entire river basin, assisted by hydrological modeling data. In contrast, the feasibility of using remotely-sensed hydrological variables (RSHVs) and their standardized forms together with water balance representations (WBR) obtained from the river upstream to reconstruct estuarine R for an entire basin, has been rarely investigated. Therefore, our study aimed to construct a correlative relationship between the estuarine observed R and the upstream, spatially averaged RSHVs, together with their standardized forms and WBR, for the Mekong River basin, using estuarine R reconstructions, at a monthly temporal scale. We found that the reconstructed R derived from the upstream, spatially averaged RSHVs agreed well with the observed R, which was also comparable to that calculated using traditional remote sensing data (RSD). Better performance was achieved using spatially averaged, standardized RSHVs, which should be potentially attributable to spatially integrated information and the ability to partly bypass systematic biases by both human (e.g., dam operation) and environmental effects in a standardized form. Comparison of the R reconstructed using the upstream, spatially averaged, standardized RSHVs with that reconstructed from the traditional RSD, against the observed R, revealed a Pearson correlation coefficient (PCC) above 0.91 and below 0.81, a root-mean-squares error (RMSE) below 6.1 mm and above 8.5 mm, and a Nash–Sutcliffe model efficiency coefficient (NSE) above 0.823 and below 0.657, respectively. In terms of the standardized water balance representation (SWBR), the reconstructed R yielded the best performance, with a PCC above 0.92, an RMSE below 5.9 mm, and an NSE above 0.838. External assessment demonstrated similar results. This finding indicated that the standardized RSHVs, in particular its water balance representations, could lead to further improvement in estuarine R reconstructions for river basins affected by various systematic influences. Comparison between hydrological stations at the Mekong River Delta entrance and near the estuary mouth revealed tidally-induced backwater effects on the estimated R, with an RMSE difference of 4–5 mm (equivalent to 9–11% relative error).

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3