Large-Scale Automatic Vessel Monitoring Based on Dual-Polarization Sentinel-1 and AIS Data

Author:

Pelich Ramona,Chini Marco,Hostache RenaudORCID,Matgen Patrick,Lopez-Martinez CarlosORCID,Nuevo Miguel,Ries Philippe,Eiden Gerd

Abstract

This research addresses the use of dual-polarimetric descriptors for automatic large-scale ship detection and characterization from synthetic aperture radar (SAR) data. Ship detection is usually performed independently on each polarization channel and the detection results are merged subsequently. In this study, we propose to make use of the complex coherence between the two polarization channels of Sentinel-1 and to perform vessel detection in this domain. Therefore, an automatic algorithm, based on the dual-polarization coherence, and applicable to entire large scale SAR scenes in a timely manner, is developed. Automatic identification system (AIS) data are used for an extensive and also large scale cross-comparison with the SAR-based detections. The comparative assessment allows us to evaluate the added-value of the dual-polarization complex coherence, with respect to SAR intensity images in ship detection, as well as the SAR detection performances depending on a vessel’s size. The proposed methodology is justified statistically and tested on Sentinel-1 data acquired over two different and contrasting, in terms of traffic conditions, areas: the English Channel the and Pacific coastline of Mexico. The results indicate a very high SAR detection rate, i.e., >80%, for vessels larger than 60 m and a decrease of detection rate up to 40 % for smaller size vessels. In addition, the analysis highlights many SAR detections without corresponding AIS positions, indicating the complementarity of SAR with respect to cooperative sources for detecting dark vessels.

Funder

Fonds National de la Recherche Luxembourg

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysing the Role of Artificial Reefs in Blue Tourism;Advances in Environmental Engineering and Green Technologies;2024-06-07

2. Enhancement of Small Ship Detection Using Polarimetric Combination from Sentinel−1 Imagery;Remote Sensing;2024-03-29

3. Ship Detection Methods in Large Scene SAR Images Based on Lightweight Optimization and Knowledge Distillation;Proceedings of the International Conference on Computer Vision and Deep Learning;2024-01-19

4. Ship Detection With SAR C-Band Satellite Images: A Systematic Review;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

5. Feature Joint Learning for SAR Target Recognition;IEEE Transactions on Geoscience and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3