Reconstruction of Synthetic Aperture Radar Raw Data under Analog-To-Digital Converter Saturation Distortion for Large Dynamic Range Scenes

Author:

Xiao PengORCID,Liu MinORCID,Guo Wei,Chen Wenjiao

Abstract

Digital storage and transmission are common processes in modern synthetic aperture radar systems; thus, analog-to-digital converters are indispensable. Such processes can lead to two types of error: quantization (or granular) error and saturation (or clipping) error, which cause sampling noise, and radiometric and harmonic distortions in final images. Traditionally, reasonable choices of the gain and the number of quantization bits by the analog-to-digital converter based on the echo distribution can effectively reduce these errors. However, establishing the gain control repository of a synthetic aperture radar mission is a long process. In addition, if the dynamic range of the backscattering coefficient is extremely large or if unexpected strong targets appear in a scene, then harmonics occur in the echo, which turns the variable gain amplifier into chaos based on statistic and, inevitably, results in saturation in the raw data. Once raw data saturation occurs, the SAR system can conventionally adjust only the analog-to-digital converter in the next observation, thus reducing timeliness. Power loss compensation based on a statistical model and saturation (clipping) factor on a large-scale could compensate for the energy loss in images; however, detail interference, such as harmonic distortion, cannot be effectively suppressed, which will lead to false targets in the focused data. To address this particular problem, a novel anti-saturation method for large dynamic range scenes is proposed in this paper. The log-normal distribution is used in this article to describe dynamic range scenes with strong isolated targets, which mainly cause receiver saturation. Using the statistical distribution of complex scenes as a priori information, a maximum a posteriori estimation algorithm is proposed to simultaneously compensate for the saturated values in the raw data and retain the non-saturated values. Thus, the details of the weak background are well preserved, and the isolated strong targets with sparsity are reconstructed perfectly. With Monte Carlo simulation, the proposed method can improve the radiometric accuracy by 5 to 10 dB and effectively suppress the energy of false targets. Based on TerraSAR-X, ALOS-2, and Radarsat-1 synthetic aperture radar data, the effectiveness and robustness of the proposed method are also verified by simulations.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3