Evaluation of Matching Costs for High-Quality Sea-Ice Surface Reconstruction from Aerial Images

Author:

Kim Jae-InORCID,Hyun Chang-UkORCID,Han HyangsunORCID,Kim Hyun-cheolORCID

Abstract

Satellite remote sensing can be used effectively with a wide coverage and repeatability in large-scale Arctic sea-ice analysis. To produce reliable sea-ice information, satellite remote-sensing methods should be established and validated using accurate field data, but obtaining field data on Arctic sea-ice is very difficult due to limited accessibility. In this situation, digital surface models derived from aerial images can be a good alternative to topographical field data. However, to achieve this, we should discuss an additional issue, i.e., that low-textured surfaces on sea-ice can reduce the matching accuracy of aerial images. The matching performance is dependent on the matching cost and search window size used. Therefore, in order to generate high-quality sea-ice surface models, we first need to examine the influence of matching costs and search window sizes on the matching performance on low-textured sea-ice surfaces. For this reason, in this study, we evaluate the performance of matching costs in relation to changes of the search window size, using acquired aerial images of Arctic sea-ice. The evaluation concerns three factors. The first is the robustness of matching to low-textured surfaces. Matching costs for generating sea-ice surface models should have a high discriminatory power on low-textured surfaces, even with small search windows. To evaluate this, we analyze the accuracy, uncertainty, and optimal window size in terms of template matching. The second is the robustness of positioning to low-textured surfaces. One of the purposes of image matching is to determine the positions of object points that constitute digital surface models. From this point of view, we analyze the accuracy and uncertainty in terms of positioning object points. The last is the processing speed. Since the computation complexity is also an important performance indicator, we analyze the elapsed time for each of the processing steps. The evaluation results showed that the image domain costs were more effective for low-textured surfaces than the frequency domain costs. In terms of matching robustness, the image domain costs showed a better performance, even with smaller search windows. In terms of positioning robustness, the image domain costs also performed better because of the lower uncertainty. Lastly, in terms of processing speed, the PC (phase correlation) of the frequency domain showed the best performance, but the image domain costs, except MI (mutual information), were not far behind. From the evaluation results, we concluded that, among the compared matching costs, ZNCC (zero-mean normalized cross-correlation) is the most effective for sea-ice surface model generation. In addition, we found that it is necessary to adjust search window sizes properly, according to the number of textures required for reliable image matching on sea-ice surfaces, and that various uncertainties due to low-textured surfaces should be considered to determine the positions of object points.

Funder

Korea Polar Research Institute

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3