Karst Dolines Support Highly Diversified Soil Collembola Communities—Possible Refugia in a Warming Climate?

Author:

Marcin MichalORCID,Raschmanová NatáliaORCID,Miklisová DanaORCID,Šupinský JozefORCID,Kaňuk JánORCID,Kováč ĽubomírORCID

Abstract

Karst dolines, as geomorphologically diverse natural landforms, usually exhibit more or less steep microclimatic gradients that provide a mosaic of diverse microhabitat conditions, resulting in a high diversity of soil biota with numerous rare endemic and/or relict species occupying these habitats. In this study, we investigated the spatial patterns of Collembola abundance, species richness, community structure and distribution of functional groups at topographically and microclimatically different sites across three open (unforested) karst dolines in a north-south direction in the Slovak Karst, Slovakia. We also assessed the refugial capacity of dolines for collembolan communities. The Friedman ANOVA test confirmed the significant differences in soil mean temperatures between the sites of all the dolines selected. The diverse soil microclimatic conditions within the dolines supported higher Collembola diversity (species numbers, diversity indices) compared with sites on the karst plateau and showed a potential to facilitate the persistence of some species that are absent or very rare in the surrounding landscape. In dolines with circular morphology and comparable size, the topography and soil microclimate had a stronger effect on community composition and structure than soil organic carbon. Shallow solution dolines provided microhabitats for various functional groups of soil Collembola in relation to the microclimatic character of the individual sites. It was observed that such landforms can also function as microclimatic refugia for cold-adapted species through the accumulation of colder air and the buffering of the local microclimate against the ambient mesoclimate, thus underlying the necessity of adequate attention in terms of the conservation of the karst natural phenomena.

Funder

Slovak Scientific Grant Agency

Slovak Research and Development Agency

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Reference115 articles.

1. Extinction risk from climate change;Thomas;Nature,2004

2. Parry, M.L., Canziani, O.F., Palutikof, J.P., Van Der Linden, P.J., and Hansen, C.E. (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press. [1st ed.].

3. A meta-analysis of responses of soil biota to global change;Blankinship;Oecologia,2011

4. Refugia: Identifying and understanding safe havens for biodiversity under climate change;Keppel;Glob. Ecol. Biogeogr.,2012

5. Ecological conditions, flora and vegetation of a large doline in the Mecsek Mountains (South Hungary);Acta Bot. Croat.,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3