Author:
Kim Kyuseok,Choi Jaegu,Lee Youngjin
Abstract
Industrial high-energy X-ray imaging systems are widely used for non-destructive testing (NDT) to detect defects in the internal structure of objects. Research on X-ray image noise reduction techniques using image processing has been widely conducted with the aim of improving the detection of defects in objects. In this paper, we propose a non-local means (NLM) denoising algorithm to improve the quality of images obtained using an industrial 3 MeV high-energy X-ray imaging system. We acquired X-ray images using various castings and assessed the performance visually and by obtaining the intensity profile, contrast-to-noise ratio, coefficient of variation, and normalized noise power spectrum. Overall, the quality of images processed by the proposed NLM algorithm is superior to those processed by existing algorithms for the acquired casting images. In conclusion, the NLM denoising algorithm offers an efficient and competitive approach to overcome the noise problem in high-energy X-ray imaging systems, and we expect the accompanying image processing software to facilitate and improve image restoration.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献