Identification of Abnormal Data for Synchronous Monitoring of Transformer DC Bias Based on Multiple Criteria

Author:

Kou Zhongqing1,Lin Sheng1ORCID,Wang Aimin2,He Yuanda1,Chen Long3

Affiliation:

1. School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China

2. School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, China

3. Shenzhen Power Supply Bureau Co., Ltd., Shenzhen 518028, China

Abstract

Seriously abnormal data exist in the synchronous monitoring data of transformer DC bias, which causes serious data feature contamination and even affects the identification of transformer DC bias. For this reason, this paper aims to ensure the reliability and validity of synchronous monitoring data. This paper proposes an identification of abnormal data for the synchronous monitoring of transformer DC bias based on multiple criteria. By analyzing the abnormal data of different types, the characteristics of abnormal data are obtained. Based on this, the abnormal data identification indexes are introduced, including gradient, sliding kurtosis and Pearson correlation coefficient. Firstly, the Pauta criterion is used to determine the threshold of the gradient index. Then, gradient is used to identify the suspected abnormal data. Finally, the sliding kurtosis and Pearson correlation coefficient are used to identify the abnormal data. Data for synchronous monitoring of transformer DC bias in a certain power grid are used to verify the proposed method. The results show that the accuracy of the proposed method in identifying mutated abnormal data and zero-value abnormal data is claimed to be 100%. Compared with traditional abnormal data identification methods, the accuracy of the proposed method is significantly improved.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Natural Science Foundation of Sichuan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3