Twitter Sentiment Analysis and Influence on Stock Performance Using Transfer Entropy and EGARCH Methods

Author:

Mendoza-Urdiales Román A.ORCID,Núñez-Mora José AntonioORCID,Santillán-Salgado Roberto J.ORCID,Valencia-Herrera Humberto

Abstract

Financial economic research has extensively documented the fact that the impact of the arrival of negative news on stock prices is more intense than that of the arrival of positive news. The authors of the present study followed an innovative approach based on the utilization of two artificial intelligence algorithms to test that asymmetric response effect. Methods: The first algorithm was used to web-scrape the social network Twitter to download the top tweets of the 24 largest market-capitalized publicly traded companies in the world during the last decade. A second algorithm was then used to analyze the contents of the tweets, converting that information into social sentiment indexes and building a time series for each considered company. After comparing the social sentiment indexes’ movements with the daily closing stock price of individual companies using transfer entropy, our estimations confirmed that the intensity of the impact of negative and positive news on the daily stock prices is statistically different, as well as that the intensity with which negative news affects stock prices is greater than that of positive news. The results support the idea of the asymmetric effect that negative sentiment has a greater effect than positive sentiment, and these results were confirmed with the EGARCH model.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3