Synergism of Life Cycle Assessment and Sustainable Development Goals Techniques to Evaluate Downflow Hanging Sponge System Treating Low-Carbon Wastewater

Author:

Anang Samuel1,Nasr Mahmoud12ORCID,Fujii Manabu3,Ibrahim Mona G.14ORCID

Affiliation:

1. Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt

2. Sanitary Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt

3. Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-Ku, Tokyo 152-8552, Japan

4. Environmental Health Department, High Institute of Public Health, Alexandria University, Alexandria 21544, Egypt

Abstract

While recent researchers have focused on optimizing the operational conditions of low-carbon wastewater treatment processes, they have not sufficiently evaluated the sustainability of such systems. This study is the first to assess the performance of a low-carbon wastewater treatment facility using an integration of techno-economic and life cycle assessment (LCA) criteria accompanied by several sustainability indicators. A downflow hanging sponge (DHS) reactor was operated at a hydraulic retention time of 3.4 h, an organic loading rate of 3.8 kg COD/m3 sponge/d, and 24–35 °C (scenario_1). Another two DHSs were operated in parallel, i.e., a 50% influent bypass (scenario_2) and 260 mg/L charcoal addition (scenario_3), providing carbonaceous matter to maintain the nitrification/denitrification pathway. Employing the DHS’s scenario_3 could fulfill most of the SDGs regarding the environmental (e.g., COD and nitrogen removals) and socio-economic (e.g., reliability, labor, and health and safety) targets. The LCA tool also confirmed the superior environmental benefits of scenario_3, concerning effluent quality, GHG emissions, and sludge generation. The synergistic interaction of LCA and SDGs approaches ranked the proposed DHS modifications as scenario_3 > scenario_1 > scenario_2. Hence, the current study provided an innovative strategy that could be employed to assess the sustainability of wastewater treatment systems worldwide.

Funder

TICAD7

Egypt-Japan University of Science and Technology

Japanese International Cooperation Agency

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3