Aesthetic and Thermal Suitability of Highly Glazed Spaces with Interior Roller Blinds in Najran University Buildings, Saudi Arabia

Author:

Qahtan Abdultawab M.1ORCID

Affiliation:

1. Architectural Engineering Department, College of Engineering, Najran University, Najran 66246, Saudi Arabia

Abstract

Highly glazed spaces are visually appealing and trendy, but effectively managing their temperature in hot arid climates remains a significant challenge. This study evaluates the effectiveness of dark-tinted double low-E glass with internal roller blinds in reducing heat gain in glazed spaces in hot arid climates and investigates architects’ perspectives on these facades. It combines field measurements and a survey to assess the balance between thermal control and aesthetics in such environments. This study reveals that the current glazing significantly attenuates solar radiation ingress, evidenced by a marked indoor-–outdoor temperature differential (ΔT) of approximately 9.2 °C. The mean radiant temperature registers at 1.5 °C above the indoor air temperature, which can be attributed to the glazing’s propensity to absorb and retain solar heat, resulting in an inner glass surface temperature of 43 °C. The implementation of adjustable blinds has a dynamic influence on the heat transfer coefficient (HTC), effectively modulating the temperature by impeding natural convection currents. With the blinds retracted, the HTC stands at an average of 7.1 W/m2K, which diminishes to 5 W/m2K when the blinds are 50% closed and further reduces to 4.2 W/m2K when the blinds are fully closed (100%). Survey results suggest that architects prioritise glazed facades for aesthetics (52%) while facing challenges in thermal and energy efficiency (44%). Future studies should concentrate on developing novel glazing systems that integrate solutions for visual appeal, lighting and thermal efficiency in glazed facades, particularly in hot arid climates.

Funder

Najran University

Deanship of Scientific Research at Najran University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3