A Broadscale Assessment of Sentinel-2 Imagery and the Google Earth Engine for the Nationwide Mapping of Chlorophyll a

Author:

Johansen Richard A.1ORCID,Reif Molly K.2ORCID,Saltus Christina L.1ORCID,Pokrzywinski Kaytee L.3

Affiliation:

1. Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Rd., Vicksburg, MS 39180, USA

2. Joint Airborne Lidar Bathymetry Technical Center of Expertise, 7225 Stennis Airport Rd., Kiln, MS 39556, USA

3. National Center for Coastal Ocean Science, National Oceanic and Atmospheric Administration, 101 Pivers Island Rd., Beaufort, NC 28516, USA

Abstract

Harmful algal blooms are a global phenomenon that degrade water quality and can result in adverse health impacts to both humans and wildlife. Monitoring algal blooms at scale is extremely difficult due to the lack of coincident data across space and time. Additionally, traditional field collection methods tend to be labor- and cost-prohibitive, resulting in disparate data collection not capable of capturing the physical and biological variations within waterbodies or regions. This research attempts to help alleviate this issue by leveraging large, public, water quality databases coupled with open-access Google Earth Engine-derived Sentinel-2 imagery to evaluate the practical usability of four common chlorophyll a algorithms as a proxy for detecting and mapping algal blooms nationwide. Chlorophyll a data were aggregated from spatially diverse sites across the continental United States between 2019 and 2022. Data were aggregated via a field method and matched to coincident Sentinel-2 imagery using k-folds cross-validation to evaluate the performance of the band ratio algorithms at the nationwide scale. Additionally, the dataset was portioned to evaluate the influence of temporal windows and annual consistency on algorithm performance. The 2BDA and the NDCI algorithms were the most viable for broadscale mapping of chlorophyll a, which performed moderately well (R2 > 0.5) across the entire continental united states, encompassing highly diverse spatial, temporal, and physical conditions. Algorithms’ performances were consistent across different field methods, temporal windows, and annually. The most compatible field data acquisition method was the chlorophyll a, water, trichromatic method, uncorrected with R2 values of 0.63, 0.62, and 0.41 and RMSE values of 15.89, 16.2, and 23.30 for 2BDA, NDCI, and MCI, respectively. These results indicate the feasibility of utilizing band ratio algorithms for broadscale detection and mapping of chlorophyll a as a proxy for HABs, which is especially valuable when coincident data are unavailable or limited.

Funder

USACE Aquatic Nuisance Species Research Program, USACE HAB Research and Development Initiative

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3