A Techno-Economic-Environmental Feasibility Study of Residential Solar Photovoltaic/Biomass Power Generation for Rural Electrification: A Real Case Study

Author:

Kassem Rasha1,Mahmoud Mohamed Metwally2ORCID,Ibrahim Nagwa F.3ORCID,Alkuhayli Abdulaziz4ORCID,Khaled Usama2,Beroual Abderrahmane5ORCID,Saleeb Hedra1ORCID

Affiliation:

1. Electrical Department, Faculty of Technology and Education, Sohag University, Sohag 82524, Egypt

2. Electrical Engineering Department, Faculty of Energy Engineering, Aswan University, Aswan 81528, Egypt

3. Electrical Department, Faculty of Technology and Education, Suez University, P.O. Box 43221, Suez 43533, Egypt

4. Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia

5. AMPERE Lab UMR CNRS 5005, Ecole Centrale de Lyon, University of Lyon, 36 Avenue Guy de Collongue, 69130 Ecully, France

Abstract

To avert climate change, there has been a rise in the usage of green energy sources that are also beneficial to the environment. To generate sustainable energy in a financially and technically efficient manner, our research attempts to close the gaps. The potential of green sources like photovoltaic (PV) and biomass for a rural community southwest of Sohag Al Gadida City, Sohag, Egypt, is examined in this research considering its techno-economic (TE) and eco-friendly feasibility. The HOMER Pro v3.14 package is used as a scaling and optimization instrument, to calculate the price of the PV/biomass setup and the size and characteristics of its parts. This is to estimate the corresponding electrical production and reduce the total annual cost for the customer. The suggested system structure is validated through the presentation of simulation outcomes and evaluations utilizing MATLAB/SIMULINK R2022a. In addition, a TE-environmental investigation of the optimized PV/biomass structure is performed. The optimum structure is carefully chosen from the best four configurations using the demand predilection by analogy to the perfect technique based on the generation cost, operation cost, energy production, and renewable fraction. The results also indicate that using hybrid PV/biomass is an attractive choice with the initial capital cost (ICC: USD 8.144), net present cost (NPC: USD 11,026), a low cost of energy (LCOE: 0.184 USD/kWh), and the high renewable fraction (RF: 99.9%) of the system. The annual CO2 emission performance of a PV/biomass system is much better than that of the grid alone and PV/diesel. This method might be applied in rural areas in other developing countries.

Funder

King Saud University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3