Enhancing the Lifetime and Energy Efficiency of Wireless Sensor Networks Using Aquila Optimizer Algorithm

Author:

Taha Ashraf A.,Abouroumia Hagar O.,Mohamed Shimaa A.,Amar Lamiaa A.ORCID

Abstract

As sensors are distributed among wireless sensor networks (WSNs), ensuring that the batteries and processing power last for a long time, to improve energy consumption and extend the lifetime of the WSN, is a significant challenge in the design of network clustering techniques. The sensor nodes are divided in these techniques into clusters with different cluster heads (CHs). Recently, certain considerations such as less energy consumption and high reliability have become necessary for selecting the optimal CH nodes in clustering-based metaheuristic techniques. This paper introduces a novel enhancement algorithm using Aquila Optimizer (AO), which enhances the energy balancing in clusters across sensor nodes during network communications to extend the network lifetime and reduce power consumption. Lifetime and energy-efficiency clustering algorithms, namely the low-energy adaptive clustering hierarchy (LEACH) protocol as a traditional protocol, genetic algorithm (GA), Coyote Optimization Algorithm (COY), Aquila Optimizer (AO), and Harris Hawks Optimization (HHO), are evaluated in a wireless sensor network. The paper concludes that the proposed AO algorithm outperforms other algorithms in terms of alive nodes analysis and energy consumption.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Green Anaconda Optimization Based Energy Aware Clustering Protocol for 6G Wireless Communication Systems;Mobile Networks and Applications;2023-12-01

2. Nature-Inspired Energy Enhancement Technique for Wireless Sensor Networks;Energies;2023-10-10

3. Coyote Optimization Algorithm for Enhancing Connectivity and Energy Efficiency in WSN;2023 4th International Conference on Smart Electronics and Communication (ICOSEC);2023-09-20

4. A Comprehensive Survey on Aquila Optimizer;Archives of Computational Methods in Engineering;2023-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3