Holistic Utility Satisfaction in Cloud Data Centre Network Using Reinforcement Learning

Author:

Goudarzi PejmanORCID,Hosseinpour Mehdi,Goudarzi Roham,Lloret JaimeORCID

Abstract

Cloud computing leads to efficient resource allocation for network users. In order to achieve efficient allocation, many research activities have been conducted so far. Some researchers focus on classical optimisation theory techniques (such as multi-objective optimisation, evolutionary optimisation, game theory, etc.) to satisfy network providers and network users’ service-level agreement (SLA) requirements. Normally, in a cloud data centre network (CDCN), it is difficult to jointly satisfy both the cloud provider and cloud customer’ utilities, and this leads to complex combinatorial problems, which are usually NP-hard. Recently, machine learning and artificial intelligence techniques have received much attention from the networking community because of their capability to solve complicated networking problems. In the current work, at first, the holistic utility satisfaction for the cloud data centre provider and customers is formulated as a reinforcement learning (RL) problem with a specific reward function, which is a convex summation of users’ utility functions and cloud provider’s utility. The user utility functions are modelled as a function of cloud virtualised resources (such as storage, CPU, RAM), connection bandwidth, and also, the network-based expected packet loss and round-trip time factors associated with the cloud users. The cloud provider utility function is modelled as a function of resource prices and energy dissipation costs. Afterwards, a Q-learning implementation of the mentioned RL algorithm is introduced, which is able to converge to the optimal solution in an online and fast manner. The simulation results exhibit the enhanced convergence speed and computational complexity properties of the proposed method in comparison with similar approaches from the joint cloud customer/provider utility satisfaction perspective. To evaluate the scalability property of the proposed method, the results are also repeated for different cloud user population scenarios (small, medium, and large).

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference66 articles.

1. A survey on data centre networking for cloud computing;Wang;Comput. Netw.,2015

2. InFeMo: Flexible Big Data Management Through a Federated Cloud System;Stergiou;ACM Trans. Internet Technol.,2022

3. Joint customer/provider evolutionary multi-objective utility maximization in cloud data centre networks;Goudarzi;Iran. J. Sci. Technol. Trans. Electr. Eng.,2021

4. Some studies in machine learning using the game of checkers;Samuel;IBM J. Res. Develop.,1959

5. Russell, S., and Norvig, P. (2009). Prentice-Hall, Pearson Education, Inc.. [3rd ed.].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3