Damage Evaluation of Concrete under Uniaxial Compression Based on the Stress Dependence of AE Elastic Wave Velocity Combined with DIC Technology

Author:

Li Guodong,Gu Jiarui,Ren Zhengyi,Zhao Fengnian,Zhang Yongquan

Abstract

This study presented evaluation of a concrete damage process by the acoustic emission (AE) technique under uniaxial multi-step compressive loading procedure combined with digital image correlation (DIC). The results showed that AE elastic wave velocity had good stress dependence in the damage process of concrete specimens with different sizes (cube, prism) and coarse aggregate characteristics (volume fraction, maximum size), and the effects of specimen sizes and coarse aggregate characteristics on the stress dependence can be nearly neglected. The standard deviation of 32 AE elastic wave velocities was used as the criterion to evaluate the relative stress ratio of concrete under different damage states, and the damage process of concrete was divided into three damage stages according to this criterion. When the standard deviation is below 70, in the range of 70 to 1700, and greater than 1700, the concrete damage process is defined as steady damage process, accelerated damage process and buckling damage process, respectively. The accuracy of the presented evaluation methodology was demonstrated by comparative results with digital image correlation. The results indicate that the standard deviation of AE elastic wave velocities can potentially serve as a reliable, convenient, and non-destructive evaluation criterion of concrete damage state under uniaxial compressive loading.

Funder

the National Natural Science Foundation of China

Natural Science Foundation of Inner Mongolia in China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3