Thermogravimetric Experiment of Urea at Constant Temperatures

Author:

Zhu Neng,Qian Feng,Xu Xiaowei,Wang Mingda,Teng Qi

Abstract

There are still many unsolved mysteries in the thermal decomposition process of urea. This paper studied the thermal decomposition process of urea at constant temperatures by the thermal gravimetric–mass spectrometry analysis method. The results show that there are three obvious stages of mass loss during the thermal decomposition process of urea, which is closely related to the temperature. When the temperature was below 160 °C, urea decomposition almost did not occur, and molten urea evaporated slowly. When the temperature was between 180 and 200 °C, the content of biuret, one of the by-products in the thermal decomposition of urea, reached a maximum. When the temperature was higher than 200 °C, the first stage of mass loss was completed quickly, and urea and biuret rapidly broke down. When the temperature was about 240 °C, there were rarely urea and biuret in residual substance; however, the content of cyanuric acid was still rising. When the temperature was higher than 280°C, there was a second stage of mass loss. In the second stage of mass loss, when the temperature was higher than 330 °C, mass decreased rapidly, which was mainly due to the decomposition of cyanuric acid. When the temperature was higher than 380 °C, the third stage of mass loss occurred. However, when the temperature was higher than 400 °C, and after continuous heating was applied for a sufficiently long time, the residual mass was reduced to almost zero eventually.

Publisher

MDPI AG

Subject

General Materials Science

Reference30 articles.

1. Urea in the history of organic chemistry;Frederick;J. Chem. Educ. (Am. Chem. Soc.),1956

2. The conversion of ammonium cyanate into urea—a saga in reaction mechanisms

3. Vehicular Emissions in Review

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3